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First-order rigidity on Cayley trees
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Tree models for rigidity percolation, in systems with only central forces, are introduced and solved. A
probability vector describes the propagation of rigidity outward from a rigid border. All components of this
‘‘vector order parameter’’ are singular at thesamerigidity thresholdpc . The infinite-cluster probabilityP` is
usually first order atpc , except in those cases which are equivalent to connectivity percolation. In many cases,
P`;DP`1(p2pc)

1/2, indicating critical fluctuations superimposed on the first-order jump (DP`). Our tree
models for rigidity are in qualitative disagreement with ‘‘constraint-counting’’ mean-field theories. In an
important subclass of tree models ‘‘bootstrap’’ percolation and rigidity percolation are equivalent.
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I. INTRODUCTION

Soon after the resurgence of interest in percolation p
nomena, the elastic constants of depleted mater
were studied. Although early work suggested@1# that the
conductivity and elasticity exponents were the same, it w
soon realized that the elasticity exponents were usually
ferent @2#, and in particular one must draw a distinctio
between the elasticity of systems which have only ‘‘cent
forces’’ @3# and those which also have ‘‘bond-bending
forces. If a system has bond-bending forces, the percola
geometry is in many ways similar to that of the connectiv
percolation problem. Of interest in this paper is the fa
that when a system is supported by only central forc
the percolation geometry isvery differentfrom that occurring
in connectivity percolation. We illustrate this difference b
developing and solving models for rigidity percolation o
Cayley trees, and by comparing those models with the an
gous results for connectivity percolation on trees@4#. Many
of the concepts we develop using tree models can be
tended to regular lattices, as will be elaborated upon in
paper.

There have been several groups of scientists and e
neers interested in the ability of central-force structures
transmit stress. Besides its intrinsic interest, this problem
relevant to the analysis of engineering structures, glas
granular materials, and gels@5#. The straightforward way to
study this problem is to construct particular models wh
have only central forces, and to study the types of structu
which support stress. In the physics community, the stand
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model has been lattices composed of Hookian springs. Di
solution of the force equations for these lattices has provi
quite variable estimates of the percolation threshold, a
considerable controversy about the critical exponents@6–9#.
In the mathematics community, there has been a long his
of attempts to relate the connectivity of a ‘‘graph’’ to it
ability to support stress@10–13#. The majority of physicists
were unaware, till recently@5,15#, that there is a rigorous
theorem which relates connectivity to rigidity but only fo
graphs in the plane. Of more practical importance is the fac
that there arefast algorithms@13,14# by which this theorem
can be used to actually find the infinite cluster@15# and
stressed backbone@5# of some graphs~e.g. the triangular
lattice with central forces!. These results are relevant to ra
dom lattices@5#, which are in many cases of most practic
interest.

There are two different types of mean-field theory ava
able for the rigidity transition. The first, based on an appro
mate ‘‘constraint counting,’’ predicts a second-order tran
tion in the ‘‘number of floppy~flexible! modes’’ @16#, and
has been extensively applied to the rigidity of glasses
gels. However it was realized in that paper, and recen
quantitatively confirmed@15#, that the number of floppy
modes per site does not approach zero at the percola
point. There is also a recent phenomenological field the
@17# which predicts first-order rigidity, but the connectio
between the model parameters and the lattice parameter
evant to rigidity are not clear in that analysis. The tree mo
els developed here provide a more complete mean-fi
theory for the rigidity transition. We find the infinite-cluste
probability shows a first-order jump, and, superimposed
this first-order jump, there is a continuous singularity on a
proach to the transition from above. We also find that o
subclass of our tree models is equivalent to tree models
5800 © 1997 The American Physical Society
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FIG. 1. The geometry of trees.~a! A z55, b51 tree.~b! One branch of the tree of~a!. ~c! One branch of ab53 tree.
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bootstrap percolation@18#, although on regular lattices the
are not equivalent. The paper is arranged as follows. In S
II, we introduce the tree geometry and the vector probabi
~order parameter! used to describe the transmission of rigi
ity from a rigid border. Section III contains a detailed ana
sis of tree models for both site and bond dilution. In Sec.
we discuss the ‘‘house of cards’’ mechanism for first-ord
rigidity and discuss the failings of the traditional constrai
counting mean-field theories in the light of the tree resu
We also calculate the number of floppy modes, and sh
that even the second derivative is nonsingular on trees.
is not too surprising, since surface bonds dominate if av
ages over the whole tree, as is done in the floppy m
calculation. Section V contains a brief summary and conc
sion.
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II. GEOMETRY AND DEFINITION OF VARIABLES

The structure of the tree models we consider is illustra
in Fig. 1. Following normal convention, we definez to be the
number of branches of the tree@for example, in Fig. 1~a! z
55#. In Fig. 1~a!, each site of the tree is connected by on
one bond to a neighboring site. In general we may havb
bonds or bars connecting neighboring sites@for example, in
Fig. 1~c!, b53#. Theb bonds are assumed to be nonparall
so that each bond represents an independent constraint.
two variables in our analysis arez andb. A third important
variableg is the number of degrees of freedom per site, a
is discussed in the next paragraph. The feature of the
geometry which makes the analysis tractable is that we
calculate the probability of rigidity along separate branch
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of treesindependently, and then combine the branches of t
tree to form the final Cayley tree. For example one ‘‘branc
of the tree of Fig. 1~a! is presented in Fig. 1~b!. We use the
letterP, with various subscripts, for the site probabilities
the entire tree@e.g., Fig. 1~a!#, while we useT, with various
subscripts, to denote the site probabilities of the branche
the trees. The qualitative behavior ofT andP are the same
and we concentrate for the most part on the analysis ofT.

Each node@the sites in Figs. 1~a! and 1~b!, and the el-
lipses in Fig. 1~c!# represents a ‘‘joint’’~pointlike node! or
‘‘body’’ ~see below! on a lattice or ‘‘graph,’’ and is assigne
a certain number of ‘‘degrees of freedom.’’ In connectivi
percolation each node is either connected or disconnecte
it has only one possible ‘‘degree of freedom,’’ i.e., if a site
disconnected it has one degree of freedom, while if it
connected it has no degrees of freedom. If we conside
lattice of joints connected by central-force springs, then e
free joint has two translational degrees of freedom in t
dimensions, and three degrees of freedom in three dim
sions. However, when we make rigid clusters, they are ri
‘‘bodies’’ so they also have rotational degrees of freedo
For example, abody in two dimensions has three degrees
freedom~two translations and one rotation!, while a body in
three dimensions has six degrees of freedom~three transla-
tions and three rotations!. In general, we allow each site t
haveg degrees of freedom. Some practically important v
ues forg are as follows:

g51 for connectivity percolation, ~1a!

g5d for a joint, ~1b!

g5d~d11!/2 for a body. ~1c!

Hered is the spatial dimension. We consider growing a tr
outward from a rigid boundary. A bond~bond percolation! or
site ~site percolation! is present on the tree with probabilit
p. If there is a finite asymptotic probability that the cent
node of the tree is rigidly connected to the boundary, then
are above the rigidity percolation thresholdpc , whereas, if
the probability of being on the infinite cluster dies out as
number of levels becomes very large, we are belowpc . The
behavior on crossingpc depends on whether the transition
first or second order, as will be discussed further below
the case of connectivity percolation, there is only one deg
of freedom per node, and we only have to keep track of
probability that connectivity is transmitted away from th
boundary. In the case of rigidity percolation it is necessary
consider a larger set of site probabilities. In fact, each
may have 0,1,2,...g degrees of freedom with respect to th
boundary, so we define the probabilitiesP0 ,...,Pg to be the
probabilities that a site has between 0 andg degrees of free-
dom ~DOF’s! with respect to the boundary~a similar defini-
tion applies to the branch probabilitiesT!. For example, if
g53, ~1! P3 ~or T3! is the probability that a node has thre
DOF’s with respect to the border.~2! P2 ~or T2! is the prob-
ability that a node has two DOF’s with respect to the bord
~3! P1 ~or T1! is the probability that a node has one DO
’
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with respect to the border.~4! P0 ~or T0! is the probability
that a node has no DOF with respect to the border.

The vectorsP andT act as order parameters for the rigi
ity percolation problem on trees. However, it is also possi
to define these quantities on regular lattices, and it is lik
that an algorithm could be developed based on these p
abilities. In fact for the case of a ‘‘diode response,’’ a tran
fer matrix could be used—this would be a ‘‘directed rigidi
percolation,’’ and might be appropriate for granular med
where contacts only support compressive forces.

In many physical problems, it is important to distinguis
between the probability that a site is in the backbone a
overconstrainedor stressed,PB , and the probability that a
backbone site isisostatic or rigidly connectedbut not
stressed~which has probabilityPD!. In particular, we have
previously defined@5# P`5P05PD1PB to be the ‘‘infinite
rigid cluster’’ probability. This is closely analogous to th
infinite cluster in connectivity percolation@19#. In this anal-
ogy, the overconstrained or ‘‘stressed’’ bonds are analog
to the ‘‘backbone’’ in connectivity percolation, and rigidl
attached but unstressed~isostatic! regions are analogous t
the dangling ends in connectivity percolation. Just as
dangling ends in connectivity percolation carry no curre
the isostatic regions in rigidity percolation carry no stre
However, for trees we found it clearer to first concentrate
P` , since there are important subtleties associated with
definition of the appropriate boundary conditions for t
stressed backbone, so in this paper we do not discussPB .

III. DILUTED CAYLEY TREES

Consider Cayley trees of coordination numberz as shown
in Fig. 1. In general our parameters areg ~the number of
degrees of freedom per node!, z ~the coordination number
actually we shall usually usea5z21!, b ~the number of
bonds connecting each neighboring pair of nodes on u
luted trees!, and p ~the probability that a site or bond i
present!. We first do the calculations for a branch of the tre
@see Fig. 1~b! for a b51 case#, and then join the branche
together to obtainP` . To illustrate the method we first per
form the caseb51, as illustrated in Figs. 1~a! and 1~b! with
site dilution.

A. Site diluted trees with b51

On any tree, rigidity can only be transmitted to high
levels of the tree if there are enough new constraints
bonds present to offset the number of degrees of freedom
a newly added node. For connectivity percolation only o
bond is needed. If a node is added to ag52 tree, two bonds
are needed to offset the two degrees of freedom of the ad
node. In general, if a node withg degrees of freedom is
added, generic rigidity is transmitted to the next level of t
tree provided the node is occupied,andprovided at leastg of
the lower-level nodes to which the added node is connec
are rigid. We define the probability that a node is rigid to
T0 , andTk to be the probability that a node havek remain-
ing degrees of freedom. The branch probabilitiesTk with k
50,1,...,g are then given by
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T05p(
l5g

a S a
l D ~T0!

l~12T0!
a2 l ,

T15pS a
g21D ~T0!

g21~12T0!
a2g11,

••• ~2!

Tl5pS a
g2 l D ~T0!

g2 l~12T0!
a2g11 for 1< l<g,

Tg512 (
l50

g21

Tl .

The left-hand side of Eqs.~2! refer to a node at one highe
level than the nodes on the right-hand side. Since we
looking for asymptotic probabilities a long way from th
rigid boundary, we expect the probabilitiesTl to approach
steady state values upon iteration of Eqs.~2!. Expressions
similar to Eqs.~2! are found when the transition is mad
from the branch probabilitiesTl @see Fig. 1~c!# to the tree
probabilitiesPl @see Fig. 1~a!#, except that we now combin
z branches instead ofz21 branches. Thus we find, for ex
ample,

P05p(
l5g

z S zl DT0l ~12T0!
z2 l . ~3!

In fact once we have solved the first of Eqs.~2!, and have
foundT0 , all of the other components ofP andT follow. In
particular, ifT0 is first order at a particularpc , then all of the
other components ofT and P are first order at thesame
pc . Thus we concentrate on the behavior ofT0 .

It is interesting to note that Eq.~3! is the sameas Eq.~2!
of @18#, which treatsbootstrap percolationon trees~with the
change of variablesR512P, g5m, andl5z2m!. In boot-
strap percolation one considers that ferromagnetic orde
propagatedonly if each site has at leastm ferromagnetic
neighbours. If we start with a ferromagnetic border, it is cle
that Eq. ~3!, with the above change of variables, describ
the propagation of ferromagnetic order outward from
border. The correspondence between bootstrap percola
and rigidity percolation isnot exacton regular lattices. Now
we solve Eqs.~2! for some simple cases.

Connectivity percolation„g51…

In this case the first of Eqs.~2! reduces to that found
previously@4#. For example, fora53,

T05p~3T0~12T0!
213T0

2~12T0!1T0
3!, ~4!

which yields the trivial solutionT050, and the nontrivial
solution

T05
32A~4/p23!

2
. ~5!

The percolation thresholdpc occurs when the nontrivial so
lution ~5! approaches zero, and this occurs atpc5

1
3. Near
re

is

r
s
e
ion

pc , T0 approaches zero linearly, so the transition issecond
order and the order-parameter exponentb51.

In order for the problem to lie in the ‘‘rigidity percola
tion’’ class, there must be at least two degrees of freedom
node, i.e.,g>2. However, whenb51, if a5z2152, then
pc51, as all bonds must be present in order to transmit
gidity. Thus the simplest nontrivial cases areg52, a53,
andb51, which we now treat.

Rigidity transition for g52, a53, and b51

From the first of Eqs.~2!, we have

T05p@T0
313T0

2~12T0!#. ~6!

Of course, there is always the trivial solutionT050. In ad-
dition, Eq. ~6! implies

T05
36A~928/p!

4
. ~7!

To ensure thatT051 whenp51, take the positive root. The
interesting feature here is that the argument of the squ
root is negative forp,pc5

8
9, so this root becomes unphys

cal ~imaginary! at p5 8
9. For p,pc , the only remaining

physical ~real! root is T050, so this implies that there is
first-order jump inT0 at pc5

8
9. The magnitude of this jump

DT05
3
4. Note also that on approach topc from above, we

find @18#

T02
3
4;~p2pc!

1/2, ~8!

which illustrates critical fluctations in addition to the firs
order jump inT0 . This interesting behavior seems usual f
both bootstrap percolation and for rigidity percolation, and
does not usually happen in ordinary thermodynamic ph
transitions. From the second of Eqs.~2!, we have

T153pT0~12T0!
2, ~9!

which has two solutionsT150 and the result found by sub
stituting Eq.~7! for T0 into Eq.~9!. There is thus a first-orde
jump in T1 at the same pc as that found forT0 . The size of
this jumpDT15

1
8. Note thatT1 is zeroat p51, soT1 rises

from zero asp decreases, and peaks atp5pc . SinceT2
512T02T1 , all components of the vector order parame
are first order, and all of them have a singular correction n
pc as a consequence of Eq.~8!.

Order of the transition for general g anda, with b51

In the first of Eqs.~2!, there is always the trivial solution
T050. After removing that, the following equations holds

15p(
k5g

a S a
k DT0k21~12T0!

a2k. ~10!

If g51 ~connectivity percolation!, there is always a term
independent ofT0 on the right-hand side of this equation
and this allows a real solution for arbitrarily smallT0 , and
hence the transition is second order. However, ifg>2, the
constant term on the right-hand side is absent and the e
tion cannot be satisfied for an arbitrarily small realT0 . Thus
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there must be a first-order jump inT0 for any z.g>2. It is
possible to solve Eq.~10! to find pc explicitly in the caseg
5a21, in which case the first-order jump has magnitu
DT05121/(a21)2 @18#. However, in general we resort t
numerical methods. Before describing the numerical resu
we first introduce a matrix method which allows us to tre
generalg, b, anda.

B. Site-diluted Cayley trees for arbitrary g, a, and b

It is possible to generalize the Bethe lattices descri
above to cases where more than one bond connects n
boring nodes. In the case of site dilution, removing a s
removes all of theb bonds that enter that site from a neig
bor. In contrast, bond dilution removes one bond at a ti
and must be treated differently~see, the later discussion i
this section!. Returning to the site-dilution case, we note th
if b>g, generic rigidity is transmitted across the tree as so
as connectivity percolation occurs. This is because any
connection between two nodes withb>g ensures transmis
sion of rigidity to the newly added node, provided of cour
that the prior node is also rigid with respect to the bounda
Thus, if b>g, there are only two possible states for ea
node: rigidly connected to boundary and not connected a
to the boundary, and the model is ‘‘trivially’’ in the connec
tivity percolation class. In contrast, if there are fewer th
g bonds connecting two nodes, more interesting node st
are possible, and we must again consider the full
T0 ,...,Tg , which allows the possibility of partial transmis
sion of rigidity. We now develop a matrix method to treat t
nontrivial cases 1<b,g.

Consider adding a site to a branch of coordinationa. We
label the sites at the previous leveli51,...,a @for example,
we label the lower ellipse in Fig. 1~c! i51.# Each of these
nodes may havel i50,1,...,g degrees of freedom with re
spect to the border@for example, the lower ellipse in Fig
1~c! hasl 1 degrees of freedom with respect to the border#.

We start by adding a ‘‘free body’’ to the tree, so it ha
g degrees of freedom with respect to the boundary. Howe
when we add the new higher-level body to the tree, we a
addab bonds. But not all of the bonds that are added
‘‘useful’’ in reducing the number of degrees of freedom
the newly added body with respect to the border. For
ample, if a lower level node already hasg degrees of free-
dom with respect to the border, no matter how many bo
connect it to the higher-level body, it does not produces
constraint on the newly added body with respect to
boundary. Therefore we must define the ‘‘number of use
bonds’’ u, which lies along any sub-branch. If a lower-lev
body has zero degrees of freedom with respect to the bor
then every bond is ‘‘useful.’’ If the lower-level body has on
degree of freedom with respect to the border, then the
bond that is added is used to ‘‘cancel’’ this degree of fre
dom, and does not constrain the newly added node, so
only b21 of the bonds are useful. In general if a body h
i degrees of freedom, onlyu5b2 i of the added bonds ar
useful in producing constraint in the higher-level body. Th
the probabilityQu that a sub-branch hasu useful bonds is
given by ~note that since we are considering 1<b,g, Qg
50!
e
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Qu5H Tb2u for u51,...b

12 (
v51

b

Tb2v for u50.
~11!

Now each sub-branch addsui constraints to the newly adde
body, so the total number of constraints on the newly ad
body is( i51

a ui . Thus the probability that the new node h
k degrees of freedom is,

T05p(
l150

g

(
l250

g

••• (
la50

g

Tl1Tl2,...,TlauS g2(
i51

a

ui D ,
Tk51,...,g215p(

l150

g

(
l250

g

••• (
la50

g

Tl1Tl2,...,Tla

3dS g2k2(
i51

a

ui D , ~12!

Tg512 (
l50

g21

Tl

whereu and d are the step function and delta function, r
spectively.

For numerical purposes, a more convenient way of rep
senting these equations is to add thea sub-branches one at
time using a matrix method. We define the vectorTL

5(T0
L ,T1

L ,T2
L ,...,Tg

L) to denote the probability that th
newly added body be in one of its possible constra
‘‘states’’ after the additions of L sub-branches (L
51,2,...,a). If we have a free node it hasg degrees of
freedom so before the addition of any sub-branches,T0

5(0,0,0,...,1). Wethen have the recurrence relations

T0
L115T0

L1T1
L~T01T11•••1Tb21!1•••1Tb

LT0
~13!

and, for l51,2,...,g,

Tl
L115Tl

L~Tb1Tb111•••1Tg!1Tl11
L Tb211Tl12

L Tb22

1•••1Tl1b
L T0 . ~14!

Equations~13! and~14! may be put into matrix form, so tha

TL115M̃TL5~M̃ !aT0, ~15!

with

M̃5S 1
0
0
A
A
A
0

b1

G
0
A
A
A
0

b2

Tb21

G
�

A
A
0

•••
•••
Tb21

�

�

A
•••

bb

T1
•••
�

�

A
•••

0
T0

�

0
•••

•••
•••

G
0

0
0
A
A
A

Tb21

G

D ,

where

G5(
l5b

g

Tl ~16!



is

ili

x

ns
to

ion
is

o-

t

t a
e

t
of

e

e

55 5805FIRST-ORDER RIGIDITY ON CAYLEY TREES
and

bk5 (
l50

b2k

Tl . ~17!

Finally, we must include the possibility that the site
present or absent, so the probability vector obeys

T5p~M̃ !aT01~12p!T0. ~18!

As before, the left-hand side of Eq.~18! is the probability
vector at the next level of the tree in terms of the probab
ties at the lower levels~which are in the matrixM !.

A little algebra shows that Eq.~18! reproduces theb51
equations@Eqs. ~2!#, as it must. We illustrate the matri
method with a special case (bÞ1) which is analytically
solvable.

Nontrivial solvable case,a52, g53, b52

For a, b52 andg53, Eq. ~18! yields

S T0
T1
T2
T3

D 5pS 1
0
0
0

T01T1
T21T3

0
0

T0
T1

T21T3
0

0
T0
T1

T21T3

D 2S 0
0
0
1
D

1~12p!S 0
0
0
1
D .

The first two of these equations yield

T05p~T0
212T1T0! ~19!

and

T15p~2T0X1T1
2!, ~20!

whereX5T21T3 . Since the sum of theT’s is 1, we have
X512T02T1 , and this, with Eqs.~19! and ~20!, yields

3T0
224~221/p!T011/p250. ~21!

Solving forT0 yields,

T05
~4p22!12A~2p21!22 3

4

3p
. ~22!

Then the argument of the square root becomes negative
p,pc , given by pc5(11)/2)/2;0.933, so thatDT0
50.619.

Numerical results for general b, g, a

The results of iterating the matrix Eqs.~18! are presented
in Figs. 2–4. Figure 2~a! illustrates that, forg<b, the prob-
lem reduces to the connectivity percolation case. The tra
tion is second order, and only two components of the vec
T ~T0 and Tg! are non-zero. In contrast, whenba.g.b
-

for

i-
r

@see Fig. 2~b!#, all of the components ofT can be nonzero,
although all of them are singular at the same percolat
point. This figure also illustrates that the rigidity transition
first order even though sometimes it is onlyweaklyfirst or-
der.

In Fig. 3, we illustrate the dependence of rigidity perc
lation on the coordination numbera. In the case we choose
here,g52 andb51, the transition is always strongly firs
order. The behavior nearp51 is typical of site dilution on
any lattice, because the leading term in the probability tha
site is not rigid with respect to the boundary, is just th
probability that the site is absent, i.e., 12p. As a increases,
the point at whichT0 breaks away from 12p tends top
50, as intuitively expected.

If we start from a rigid border, it is evident upon direc
iteration using the matrix method that the transmission
rigidity depends ona and theratio b/g. In the limit b/g

FIG. 2. Rigidity percolation of site-diluted trees:~a! a54, g
53, andb53. The infinite cluster probability of one branch (T0)
and the probabilityT3 are plotted. In this case the behavior is th
same as connectivity percolation, sopc51/a and the transition is
second-order, withb51. ~b! a55, g53, andb52. T0 , T1 , T2 ,
and T3 are plotted. All are first order and singular at the sam
pc .
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FIG. 3. T0 for g52 andb51 and fora53
~a!, a55 ~b!, a58 ~c!, a512 ~d!, anda517
~e!. The transition is always first order.
o
r

ri
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d
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51, we have connectivity percolation, while, ifb/g→0, the
transition is first order andpc51. Using trees, we are able t
probe various values ofb/g and we present results fo
pc(a,b/g) in Fig. 4. It is seen that for all cases,pc
;G(b/g)/a for a→`, where the functionG is independent
of a. We also find that for anyb/g,1, the transition is first
order, and the size of the first-order jumpsDT0 andpc itself
increases smoothly asb/g decreases.

From the site-dilution problem, we conclude that the
gidity transition is always first order, except in cases wher
trivially reduces to connectivity percolation. However, the
is a square-root singularity superimposed on the first-or
jump in T0 for all b/g,1. However, on site-diluted lattice
with b,g, the only rigid clusters are those which are a
tached to the rigid border. In contrast, in bond percolatio
is possible to haveinternal rigid clusters, and the casesb
.g are nontrivial. Thus we now describe calculations for t
transmission of rigidity on bond-diluted trees.
-
it

er

-
it

e

C. Bond-diluted Cayley trees

As for the site-diluted case, we define the vectorT
5(T0 ,T1 ,T2 ,...,Tg). Now, we assume there is a total ofb
possible bonds between two nodes, and each is present
probabilityp, so the probabilitysk thatk bonds are actually
present is

sk5S bkD pk~12p!b2k for k<b. ~23!

Since each node hasg degrees of freedom, at mostg inde-
pendent bondscan connect two nodes. Ifk bonds~with k
.g! connect two nodes,k2g of them will be redundant, and
the two nodes will form part of a cluster that is internal
rigid. Any number of bonds in excess ofg does not add to
the number of independent constraints. Therefore the p
ability qk thatk independentbonds are present between tw
nodes is, for generalg andb,
FIG. 4. pc as a function ofb/g and a. The
data are forb/g5

1
6~a!, b/g5

1
3~b!, b/g5

1
2~c!,

b/g5
2
3~d!, andb/g51 ~e!.
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qk5H sk for k,g

(
j5g

b

sj for k5g

0 for k.g,b.

~24!

As in the site-dilution case, thesek bonds are not all ‘‘use-
ful’’ in transmitting constraint from the boundaryunlessthe
sub-branch along which they lie is at least partially co
strained. In particular, if the lower-level node hasi degrees
of freedom with respect to the boundary, onlyk2 i of the
bonds connecting that node to the newly added node actu
impose constraint. Clearly ifk< i , the branch imposes n
constraint~with respect to the boundary! on the newly added
node. We thus define theusefulbondsu5k2 i , because they
are able to propagate constraint outward from the bound
The probabilityQu for a branch to haveu useful bonds on it
is then given by

Qu55 (
i50

g2u

Tiqi1u for u51,...,g

12 (
v51

g

Qv for u50.

~25!

Now takinga such sub-branches, the total numberU of use-
ful bars is
-

lly

y.

U5 (
k51

a

uk . ~26!

If U>g, then the new node body will be rigid. Otherwise
will have k5g2U degrees of freedom. Formally we the
write

Tf5 (
u150

g

(
u250

g

••• (
ua50

g

Qu1
Qu2

,...,Qua
F~ f ,u1 ,u2 ,...,ua!,

~27!

where

F~ f ,g,a,U !5 H d~U2~g2 f !!

u~U2g!

for 0, f<g
for f50, ~28!

where, as in the site case, we used the step function and
Kroneckerd to ensure that the constraint counting is corre

As for the site-diluted case, we can write the Eqs.~27! in
matrix form:

TL115M̃TL, ~29!

with
M̃5S 100A
0

~Q11Q21•••1Qg!

Q0

0
A
0

~Q21Q31•••1Qg!

Q1

Q0

A
0

•••
•••
•••
A

•••

Qg

Qg21

Qg22

A
Q0

D .
Again starting from a bare node withT05$0,0,...,0,1%, and after connectinga legs, we obtain the desired probabilities as

T5~M̃ !aT0 ~30!

To illustrate the matrix method for the bond case, we again do a solvable case withbÞ1.

Nontrivial solvable casea52, g53, b52

From Eqs.~23! and ~24!, we have,

~q0 ,q1 ,q2 ,q3!5@~12p!2,2p~12p!,p2,0#. ~31!

Then from Eq.~25!, we have,

~Q0 ,Q1 ,Q2 ,Q3!5@12„p212p~12p!…T02p2T1,2p~12p!T01p2T1 ,p
2T0,0#. ~32!

Using these expressions in the matrix equation~29!, we have

S T0
T1
T2
T3

D 5S 1
0
0
0

~2p2p2!T01p2T1
12~2p2p2!T02p2T1

0
0

p2T0
2p~12p!T01p2T1

12~2p2p2!T02p2T1
0

0
p2T0

2p~12p!T01p2T1
12~2p2p2!T02p2T1

D 2S 0
0
0
1
D
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FIG. 5. Rigidity percolation for abond-
diluted tree with a52, g52, and b540. The
transition is close to second order, and there is
interesting nonmonotonic behavior inT1 .
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From the first of these equations, we find

T05p3T0$~423p!T012pT1%, ~33!

while the second implies

T152p2T0@12~2p2p2!T02p2T1#

1@2p~12p!T01p2T1#
2. ~34!

SubstitutingT151/2p42(423p)T0/2p from Eq. ~33! into
Eq. ~34! yields a quadratic equation inT0 . Solution of this
equation gives the nontrivial solution

T05

223p

p
12p21AS 223p

p
12p2D 22 3

4

1.5p4
. ~35!
This again becomes imaginary at the rigidity thresho
which we find to bepc50.919, and the first order jump in
T0 is, DT050.810.

Numerical results for general b, g, a

First we note that, forb51, the site dilution and bond
dilution are the same, provided we make the transforma
psite→pbond andTsite5pbondTbond thus we focus attention on
b>2.

We present numerical results for bond-diluted trees
Figs. 5 and 6. In Fig. 5, we show that even whenb@g and
many internal rigid clusters can exist on the trees, the rigid
transition remains first order. In fact, we have not found a
values ofg or b for which the bond-diluted trees are seco
order, except the trivial caseg51. However the rigidity tran-
sition is weakly first order for largeb/g. A second interest-
ing feature of Fig. 5 is the nonmonotic behavior ofT1 . Nev-
ertheless on all of the trees we studied, the rigidity transit
e
FIG. 6. pc for bond-diluted trees. The data ar
for g53, b51 ~a!; g52, b51 ~b!; g56, b55
~c!; g56, b510 ~d!; andg52, b510 ~e!.
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55 5809FIRST-ORDER RIGIDITY ON CAYLEY TREES
is unique and first order. As in Eq.~8!, there appears to be
singular behavior superimposed on the first-order jump
T0 . On the bond-diluted trees, the percolation threshold
pends on all three parametersg, b, anda, nevertheless there
is a simple behavior in the largea limit ~see Fig. 6!, so that
pc;G(g,b)/a for a→`.

IV. ‘‘HOUSE OF CARDS’’ MECHANISM
AND COMPARISON WITH OTHER WORK

A. ‘‘House of cards’’ mechanism for first-order rigidity

The mechanism for the first-order rigidity transition is
lustrated in Fig. 7~a! for an a52, g52, b51 tree, and in
Fig. 7~b! for the bond-diluted triangular lattice. In these fi
ures, we presented a rigid cluster, and indicated a b
which we then remove. On removal of the arrowed bo
both of the rigid clusters ‘‘break’’ up into more than tw

FIG. 7. The effect of removing a bond on the cluster size d
tribution. ~a! Removing the arrowed bond from this rigid clust
leads to six separate rigid clusters.~b! Removing the arrowed bond
from this connected cluster leads to four separate rigid clusters
n
-

d
,

rigid subclusters. In Fig. 7~a!, removal of the arrowed bond
leads to six rigid subclusters, while, in Fig. 7~b!, removal of
the arrowed bond leads to the formation of four rigid su
clusters. In both cases we refer to clusters of mutually ri
bonds. In contrast, in connectivity percolation, removal of
‘‘cutting’’ or red bond leads to the breakup of the syste
into two subclusters. On large rigid clusters, the removal of
‘‘cutting’’ or red bond usually leads to formation of man
subclusters, and this ‘‘cluster collapse,’’ like a ‘‘house
cards,’’ provides a mechanism for a first-order rigidity tra
sition. However, it does notinsurea first-order transition, as
it depends onhow manyclusters are formed when a cuttin
bond is removed. In reverse, the phenomenon of cluster
lapse is ‘‘cluster freezing’’ in which there is a sudden jum
in the average cluster size as many clusters suddenly bec
mutually rigid ~for example, by replacing the arrowed bon
in Fig. 8!. It is likely that these ideas can be used to deve
scaling arguments for the amount of cluster collapse requ
for there to be a first-order rigidity transition, and we a
currently working in that direction.

B. Comparison with constraint counting methods

For simplicity, first consider bond percolation, for whic
the argument is simplest. On aregular lattice, there areN
nodes of coordinationz, with each node havingg degrees of
freedom, and withb bonds connecting each pair of node
Now we dilute the bonds of the network, withp the prob-
ability that any one bond is present. Then, ‘‘on average,’’ t
number of degrees of freedom,fN, that remain at dilution
p is @16#

fN5Ng2pbzN/21B, ~36!

where the factor of12is due to the fact that each bar is shar
between two nodes.B is the number of bonds that are ‘‘re
dundant’’ in that they are in regions of the lattice whic
would be rigid even if they were removed. The mean-fie
approximation reduces to assuming thatB50, so thatf5g
2pbz/2, and thusf approaches zero atpc52g/bz. This
counting procedure is slightly modified on trees, as the b
der is rigid, so that every bond which is next to but low
than a node in the tree contributes to the rigidity of that no
~the bonds are not ‘‘shared’’ as on a regular lattice!.

In this case, the constraint counting is

fN5Ng2pbaN1B. ~37!

Thus we have the same expression as in Eq.~36!, with the
replacementa(tree);z/2 ~regular lattice!. If we again as-
sume thatB50, we findpc(B50)5g/(ba). This estimate
is grossly in error when compared with the actual results
trees~see Fig. 6!. Clearly the stronger the first-order trans
tion, the greater in error the constraint-counting mean-fi
theory becomes.

C. Global constraint counting

It has been observed that, in two dimensions@15#, al-
though the number of floppy modes is always continuo
the second derivative of that quantity is singular. This
based on counting the number of degrees of freedomin the
whole lattice. If we perform a similar calculation on trees

-
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FIG. 8. Floppy modes on a bond-diluted tre
with a56, g53, and b51. The number of
floppy modes per site (f ) is continuous as are its
first ( f 8) and second (f 9) derivatives.
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the surface bonds dominate, nevertheless the results ar
teresting. Thus we performed a calculation which keeps tr
of the number of redundant bonds on the trees for all lev
going outwards from a rigid boundary. We performed t
calculation for bond-diluted lattices withb51. In that case,
the number of redundant bondsl levels away from the
boundary is given by

Bt5aL2 l (
k5g

a

~k2g!S a
k D ~pT0

l21!k~12pT0
l21!a2k,

~38!

whereL is the total number of levels in the tree. The to
number of redundant bonds in the tree is

B5(
l51

L

Bl . ~39!

From global constraint counting, we then have

f5g2pa1B/Ns. ~40!

Ns5aL/(a21) is the number of sites on theL level tree.
Results forf , ] f /]p, and]2f ]p2 are presented in Fig. 8. It i
clear from these calculations that there is no singular beh
ior in the second derivative off on trees. However, there is
peak in the second derivative, but at a value ofp consider-
ably less thanpc .

V. CONCLUSIONS

We have shown that it is straightforward to develop a
analyze tree models for the transmission of rigidity from
rigid border. In order to analyze these models we must
general, consider the transmission of ‘‘partial’’ rigidity, a
partially rigid structures may lead to rigidity higher up th
tree. Some of our main conclusions are the following:

~1! Except for some ‘‘trivial’’ cases which are equivale
to connectivity percolation, the rigidity transition isfirst or-
in-
k
ls

l

v-

d

n

der on trees. However there is a square-root singularity
perimposed upon the first-order transition occuring in
infinite-cluster probability. For example, this is explicitl
demonstrated in Eq.~8!.

~2! A constraint-counting mean-field theory which ignor
redundant bonds is qualitatively incorrect for trees. T
method does not describe correctly the nature of the rigid
transition. It can also grossly underestimatepc , especially if
the transition is strongly first order.

~3! We defined a vector order parameter which descri
the number of degrees of freedom two points have with
spect to each other. Although there is the possibility of m
tiple phase transitions with such a vector order parameter
find that there is only one transition on trees.

~4! The number of floppy modes and its first and seco
derivatives are nonsingular, probably due to the domina
of surface bonds on trees.

~5! Bootstrap percolation and rigidity percolation are e
actly the same onb51 trees, but different on regular lattice
It is not clear, at least to these authors, to which case~if
either!, the current field theory of Obukhov applies@17#.

Taken together with numerical results in two and thr
dimensions@5,20,21#, there is now quite strong evidence th
the rigidity transition on random lattices is oftenfirst order,
in contrast to the large number of earlier papers which h
assumed the opposite. Although the the evidence is str
that the infinite-cluster probability is usually first order, th
triangular lattice data@5# suggest that thestressed backbone
is second order. Thus the elastic constants may be se
order, while the infinite cluster is first order. We suggest t
the singular behavior superimposed on the first-order tra
tion in P` is in fact a reflection of the second-order charac
of the backbone@20#. It is interesting to note that the supe
position of a first-order jump and a critical behavior occu
in some exactly solvable ‘‘vertex models’’ of ferroelectric
@22#. It is also possible that on some lattices, the part
rigidity probabilitiesP1,P2...Pg may be singular at differen
disorder thresholds. To our knowledge, there has been
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numerical study of that possibility on regular lattices y
Finally, it is important to emphasize that the work usi
exact constraint counting is correct forrandom lattices,
while the earlier work was for regular lattices. It is still a
open question as to whether these two cases are qualitat
different.
s.

en
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